Maths MCQ Class 12 Ch- 3 | Matrices

  

Mathematics

Multiple Choice Questions (MCQ)
MCQ | Class 12 | Chapter 3
MATRICES

  • MCQ Based on the different types of Matrices
  • MCQ  Based on the Addition, Subtraction and Multiplication of Matrices.
  • MCQ Based on the Transpose, Symmetric and Skew Symmetric of Matrices
  • MCQ Based on the general problems  of Matrices.

Features

  • In this pdf given below you find the important MCQ which are strictly according to the CBSE syllabus and are very useful for the CBSE Examinations. 
  • Solution Hints are also given to some difficult problems. 
  • Each MCQ contains four options from which one option is correct. 
  • On the right hand side column of the pdf Answer option is given.

Action Plan

  • First of all students should Learn and write all basic points and Formulas related to the Matrices.
  • Start solving  the NCERT Problems with examples.
  • Solve the important assignments on the Matrices.
  • Then start solving the following MCQ.

MCQ | CHAPTER 3 | CLASS 12

MATRICES

Question 1

If A
and B are symmetric matrices of the same order, then

a) AB is a symmetric matrix  

b) A
– B is a skew-symmetric matrix

c) AB + BA is a symmetric matrix            

d) AB
– BA is a symmetric matrix

Answer: c


Question 2

If a matrix A is
symmetric as well as skew symmetric  then

a) A is a diagonal
matrix                              

b) A is a null matrix

c) A is a unit matrix                                      

d) A is a triangular
matrix

Answer: b


Question 3

If A = equation is a symmetric matrix, then x =

a) 4                      

b) 3                                 

c)
-4                     

d) -3

Answer: c


Question 4

If A is a square matrix,
then A – A’ is a

a)
diagonal matrix
                                 

b) skew-symmetric
matrix

c)
symmetric matrix
                              

d) none of these

Answer: b


Question 5

If A
is any square matrix, then which of the following is skew – symmetric?
a) A + AT          

b) A
– AT             

c) AAT                       

d) ATA

Answer: b


Question 6

If  A =  equation then 
(A – 2
I)(A – 3I) =

a)  A       

b)
I

c)
O

d)
5I

Answer
c


Question 7

If  A = equation  and  A2
equation , then 

a) α = a2 +
b2, β = ab                                  

b) α = a2 +
b2, β = 2ab
c) α = a2 + b2, β = a2 – b2                           
d) α = 2ab, β = a2 +
b2
Answer b

Question 8

If  A = equation  and B = equation  and  AB
= I
3, then  x + y equals

a) 0                          

b) -1                   

c) 2              

d) None of these

Answer a


Question 9

If A = equation and f(x) = (1 + x)(1 – x), then f(A) is 

equation                                            

equation               

equation          

equation                         

Answer: a

Question: 10

Total number of
possible matrices of order 2 X 3 with each entry 1 or 0 is

a)  6                          

b)  36                        

c)  32     
                    

d)  64

Answer: d


Question 11

If  A = equation  and A2 – KA – 5I = 0, then k =

a)
5           

b) 3           

c) 7           

d) None
of these

Answer: a

Question 12

equation  is equal to 
equation
equation

equation


equation

Answer a
Question 13
If A = equation  and  B
equation , then 
(AB)
T is equal to 

equation
equation

equation


equation

Answer b
Question 14

If matrix A = equation

where a, b, c are real
positive numbers, abc = 1 and ATA = I, 

then the value of a3 +
b3 + c3 is

a) 1                         

b) 2                               

c) 3                         

d) 4

Answer d

Solution Hint: A’A = I A2 = I

Comparing these two matrices we get

a2 + b2 + c2 =
1,         

ab + bc + ca = 0,         

ac + ba + bc = 0,       

bc + ac + ab = 0

Now using 
(a + b + c)2 and find the value of (a + b + c) we get (a + b
+ c) = 1

Using identity:   a+  b+ c3
– 3abc find the value of  a3 +
b3 + c3


Question 15

The
order of the matrix A is  3 x 5 and that
of matrix B is  2 x 3. Then order of the
matrix BA is

a)  2 x 3   
                   

b) 3 x
2                    

c) 2 x
5                      

d) 5 x
2

Answer: c


Question 16

If a matrix A is
both  symmetric and skew symmetric then
matrix A is

a) a scalar matrix                                            

b) a diagonal matrix

c) a zero matrix of
order  n x n                    

d) a rectangular
matrix.

Answer; c


Question: 17

If A = equation and  A2
– 4A + 10 I = A, then k =

a)
– 4                     

b)
0                    

c)
1 or 4                        

d)
4 and not 1

Answer:
d


Question:18

equation   if the value of x is

a)  – 7                                

b)  – 11

c)  – 2                          

d)  14

Answer: c

Question:19

If A = equation and  A-1
equation, then x equals

a)  2             
           

b)  -1/2          

c) 1                           

d) 1/2

Answer: d

Question:20

For any square matrix A,
AAT is a

a) unit
matrix
                     

b) symmetric matrix

c)
skew-symmetric matrix
                    

d) diagonal matrix

Answer: b


Question:21

If the matrix A = equation  is a symmetric matrix, then find the value of
x, y and t respectively

a) 4, 2, 3               

b) 4, 2, -3                

c) 4, 2, -7                     

d) 2, 4, -7

Answer: b

Question:22

If a matrix A is both
symmetric and skew-symmetric, then

a) A is a
diagonal matrix
                            

b) A is a zero matrix

c) A is a
scalar matrix
                                 

d) A is a square matrix

Answer: b

Question:23

The matrix A = equation  is a

a) unit matrix                                            

b) diagonal matrix         

c) symmetric matrix                                  

d) skew-symmetric
matrix

Answer: d

Question: 24

If A2 –
A + I = O, then the inverse of A is
a) I – A                

b) A
– I               

c) A           

d) A
+ I

Answer: a

Question: 25

If  equation  then the value of  x, y, z are respectively

a) 5, 2, 2                                                 
  

b) 1, -2, 3                       

c) 0, -3, 3                                                    

d) 11, 8, 3

Answer: b

Question: 26

Total
number of possible matrices of order 3 × 3 with each entry 2 or 0 is
a) 9                

b) 27           
        

c) 81               

d)
512

Answer: d

Question: 27

The matrix  equation  is  a

a)
diagonal matrix
                                        

b) symmetric matrix      

c) skew symmetric
matrix
                            

d) scalar matrix

Answer: c

Question: 28

If A
is a matrix of order m × n and B is a matrix such that AB’ and B’A are both
defined, then the order of matrix B is
a) m × m                   

b) n
× n                         

c) n
× m              

d) m
× n

Answer: d

Question: 29

If A
and B are matrices of the same order, then (AB’ – BA’) is a
a) skew-symmetric matrix                       

b)
null matrix       

c)
symmetric matrix                                  

d)
unit matrix

Answer a

Question: 30

If A is a square matrix
such that A2 = I, then (A – I)3 + (A + I)3 –
7A is equal to

a) A           

b) I – A                

c) I + A                

d) 3A

Answer: a

Question: 31

If A2 = A,
then (I + A)4  is equal to

a)  I + A                                               

b) I + 4A               

c)  I + 15 A                                          

d) None of these

Answer: c

Question: 32

If A is an m × n matrix
such that AB and BA are both defined, then B is a

a) m × n
matrix
                                   

b) n × m matrix             

c) n × n matrix                                    

d) m × n matrix

Answer: b

Question: 33

Which
of the given values of x and y make the following pairs of matrices equal

equation

a)  x = -1/ 3, y = 7                                             

b) Not possible to find

c)  y = 7,     
x = -2/ 3                                         

d) x = -1/ 3,   y = -2/ 3

Answer: b

Question 34

If A
is a symmetric matrix then, then  A2  is a

a)  symmetric matrix                                     

b)
Identity matrix

c)
skew symmetric matrix                             

d)
null matrix

Answer: a

Question: 35

Suppose
P and Q are two different matrices of order 
3 x n and n x p, then the order of the matrix  P x Q is 
?

a)  3 x p                                

b) p x
3                         

c)  n x n                  

d)  3 x 3

Answer: a

Question: 36

Find the order of the following 

equation

a)  2 x 3                               

b)
2 x 2                           

c)  3 x 2                    

d)
3 x 3

Answer: d

Question: 37

Matrices  A and 
B will be inverse of each other only if

a)  AB = BA                                 

b)  AB = BA = 0

c)  AB = 0, BA = 1                      

d) AB
= BA = I

Answer: d

Question: 38

Total number of
possible matrices of order 2 X 3 with each entry 1 or 0 is

a)  6                 

b)  36                    

c)  32                   

d)  64

Answer: d

Question: 39

If a matrix A is
both  symmetric and skew symmetric then
matrix A is

a) a scalar matrix                                                     

b) a diagonal matrix

c) a zero matrix of
order  n x n                                

d) a rectangular
matrix.

Answer: c

Question: 40

equation

Then  find AB + XY 

a)  [28]                 

b) [24]                       

c)  [32]                 

d) None of these

Answer: a

Question: 41

If A = equation then  A100  is equal to

a)
2100A            

b)  299 A                  

c)
100A                 

d)
299 A

Answer:
b

Solution Hint

We have, A = equation

A2 = A x A = equation = 2 equation = 2A

A4 = A2 . A2 = 2A . 2A = 4 A2
= 4 x 2A = 8A = 23A

Similarly  A8 = 27A          A100 = 299 A

Question: 42

The
matrix  
equation  is a

a)
Identity Matrix                              
           

b)
Symmetric Matrix

c)
Skew – Symmetric Matrix                        

d)  None of these

Answer: b

Question: 43

Each
diagonal element of a skew symmetric matrix is

a)
zero                                                         

b)
positive

c)
non-real                                  
                 

d)
negative

Answer: a

Question: 44

If A
and B are symmetric matrix of same order, then 
AB – BA is a :

a)
Skew – Symmetric Matrix                                  

b) Symmetric
Matrix

c)
Zero Matrix                                                           

d)
Identity Matrix

Answer: a

Question: 45

If A
is a square matrix such that  A2
= I, then  (A – I)3 + (A + I)3
– 7A is equal to

a)
A                            

b) I –
A                           

c)  I + A                             

d)  3 A

Answer a

Question: 46

equation

Then
the values of x are

a)  1, 5                          

b) -1,
-5                       

c)  1,6                       

d) -1,
-6

Answer: d


Question 47

If A = equation is upper triangular matrix, then  x + y is

a)
3                                 

b)
-3                             

c)  0                            

d)  1

Answer: c


Question 48

Sum of
two symmetric matrix is always

a)  symmetric matrix                                      

b)
Identity matrix

c)
skew symmetric matrix                             

d)
None of these

Answer c


Question 49

Which
of the following matrices both symmetric 
and skew symmetric matrix  ?

a)  Identity matrix                                           

b)  Unit matrix

c)
Null matrix                                                 

d)
None of these

Answer: c


Question 50

If A = equation and  B
=
equation,
then find the value of x for which  A
2
= B

a)
1                             

b)  -1                       

c)
4                         

d)
None of these

Answer: d




THANKS FOR YOUR VISIT
PLEASE COMMENT BELOW
🙏

Leave a Comment