MATHEMATICS MCQ | Class 10 | Chapter 8
TRIGONOMETRY
a) Right-angled triangles b) Any type of triangles
c) Acute angled triangles d) Obtuse angled triangles
Q 2) The value of equals to
a) tan θ b) cot θ c) cosec θ d) sec θ
Q 3) Trigonometric ratios are
a) sine, cosine and cotangent
b) sine, tangent, cotangent and secant
c) sine, cosine, tangent, cotangent, secant and cosecant
d) tangent, cotangent and secant
Q 4) Choose the correct reciprocal ratios.
a) Tan θ, Sec θ b) Cosec θ, Sec θ
c) Sec θ, Sin θ d) Tan θ, Cot θ
Q 5) What is the value of sec θ when θ is 45°?
a) √3 b) 1 c) 0 d) √2
Q 6) What is the value of sin 0° + cos 0° ?
a) 0 b) 2 c) 1 d) ∞
Q 7) Evaluate cos 30° sin 60° + cos 60° sin 30°.
a) 2 b) 0 c) 1 d) ∞
Q 8) The value of Cosec 0° is
a) Not defined b) 1 c) 0 d) 2
a) 2 b) 1 c) 4 d) 3
Q 10) The value of Cosec 90° is
a) 0 b) 2 c) 1 d) √3
(a) 45° (b) 30° (c) 29° (d) 52°
a) 2 b) 0 c) 1/ 4 d) ∞
(a) 12/ 7 (b) 24/ 7 (c) 20/ 7 (d) 7/ 24
Ans: b
Q 15) The product of sec 30° and cos 60° is
a) 0 b) 2 c) 1
a) ∠A + ∠B = 90° b) ∠A + ∠B = 180°
c) ∠A + ∠B = 60° d) ∠A + ∠B = 45°
a) Cot 25° + Tan 15° b) Cot 25° – Tan 15°
c) Cot 15° + Tan 25° d) Cot 15° – Tan 25°
a) Cosec 25° + Sec 15° b) Cosec 25° – Sec 15°
c) Cosec 15° + Sec 25° d) Cosec 15° – Sec 25°
(a) 0 (b) 1/2 (c) 2 (d) 1
a) tan2θ = sec2θ – 1 b) tan2θ + sec2θ = 1
c) tan2θ – sec2θ = 1 d) tan2θ = sec2θ + 1
Q 21) Evaluate (cosec θ – cot θ) (cosec θ + cot θ).
a) 0 b) 1 c) 2 d) 3
Q 22) Evaluate cosec θ sec θ.
a) cos θ + tan θ b) cos θ – tan θ
c) tan θ – cot θ d) cot θ + tan θ
Q 23) (Sin 30° + cos 60°) – (sin 60° + cos 30°) is equal to:
(a) 0
(b) 1 + 2√3
(c) 1-√3
(d) 1+√3
Q 25) Evaluate sec2 A + (1 + tan A) (1 – tan A).
b) 0
c) 2
d) 1
a) Cot θ
b) 0
c) 1
d) Tan θ
Q 27) The value of is equal to:
(a) 0
(b) 1
(c) 2
(d) 3
Q 28) The value of (Cos θ + sin θ)2 + (Cos θ – sin θ)2 is
a) -2
b) 0
c) 1
d) 2
(a) sin2A
(a) sin A
(b) tan A
(c) cos A
(d) cosec A
Q 31) sin (90° – A) and cos A are:
(a) Different
(b) Same
(c) Not related
(d) None of the above
Q 32) Find the value of
(a) sin60°
(b) cos60°
(c) tan60°
(d) sin30°
(a) 0
(b) 1
(c) 2
(d) 4
Q 34) Evaluate
(a) 0
(b) 1
(c) 1 / 2
(d) 2
Q 35) sin 2A = 2 sin A is true when A =
(a) 30°
(b) 45°
(c) 0°
(d) 60°
Q 36) The value of (sin 45° + cos 45°) is
(a) 1/√2
(b) 1
(c) √3/2
(d) √2
(a) √3
(b) 1/√3
(c) √3/2
(d) 1
Q 39) If ∆ABC is right angled at C, then the value of cos(A + B) is
(a) 1/2
(b) 1
(c) 0
(d) √3/2
Q 40) If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to
(a) √3
(b) √3/2
(c) 1/2
(d) 1
Q 41)
Q 42) The value of (tan 1° tan 2° tan 3° … tan 89°) is
(a) 0
(b) 1
(c) 2
(d) ½
Ans: b
Explanation:
tan 1° tan 2° tan 3°…tan 89°
= [tan 1° tan 2°…tan 44°] tan 45° [tan (90° – 44°) tan (90° – 43°)…tan (90° – 1°)]
= [tan 1° tan 2°…tan 44°] [cot 44° cot 43°…cot 1°] × [tan 45°]
= [(tan 1°× cot 1°) (tan 2°× cot 2°)…(tan 44°× cot 44°)] × [tan 45°]
= 1 × 1 × 1 × 1 × …× 1 {since tan A × cot A = 1 and tan 45° = 1} = 1
value of sin² 30° – cos² 30° is
Q 44) If sin
A = 8/ 17 what will be the value of cos
A sec A ?
a) 2
b) -1
c) 1
d) 0
Ans: c
α = √3 and cosec β = 1, then the value of α – β ?
a) -30°
b) 30°
c) 90°
d) 60°
Ans: a
triangle ABC, right angled at C, then the value of cosec (A + B) is
a) 2
b) 0
c) 1
d) ∞
Ans: c
the value of cos A sec A + sin A cosec A – tan A cot A?
a) 0
b) 2
c) 1
d) 3
Ans: c
of the following is true ?
a) sin
2A = 2sinA
b) tan
A =
c)
sin(A + B) = sin A + sin B
d) (sin
A)2 = sin2 A
Ans: d
a)
b)
c)
d)
Ans: a
cot θ = 4, then the value of is
a) tan 60o
b) cos 30o
c) tan 30o
d) sin 30o
Ans: c
a) 24o, 18o
b) 18o, 24o
c) 24o, 28o
d) 20o, 24o
Ans: b
a) 24o, 18o
b) 18o, 26o
c) 28o, 24o
d) 24o, 30o
Ans: a
a) 0o
b) 30o
c) 60o
d) 90o
Ans: d
a) 210
b)
2
c) 25
d) 1
Ans: b
Solution
Hint
tanθ + 1/ tanθ = 2 ⇒ tan2 θ – 2tan θ + 1 = 0
Factorise
this equation and then solving it we get θ = 45o
Using this value
of θ and find the required value
a) 215
b)
1
c)
2
d) 0
Ans: c
Solution
Hint
sinθ + cosecθ = 2 = 1 + 1
sinθ = 1 and cosecθ = 1
sin15 θ + cosec 15 θ = (sinθ) 15 + (cosec θ) 15 = (1)15 + (1)15 = 1 + 1 = 2
a) 45o
b) 30o
c) 60o
d) 90o
Ans: a
Solution
Hint
Dividing
both side by cos2 θ we get
Sec2 θ + tan2 θ = 3 tan θ
1 + tan2 θ + tan2 θ = 3 tan θ
2 tan2 θ – 3 tanθ + 1 = 0
Factorise
this equation we get tan θ = 1 or 1/2
tanθ = 1 ⇒ θ = 45o
sin θ = 12 cos θ , then find the value of (secθ – tan θ)(secθ + tanθ)
a) 1
b) – 1
c) 2
d) 3
Ans: a
Solution
Hint:
(sec θ – tan θ)(sec θ+ tan θ ) = sec2 θ – tan2 θ = 1
a) 3
b) 3/ 2
c) 2/
3
d) 0
Ans: d
Solution
Hint
sin θ +
cos θ = 1
Squaring
on both side and find the value of sin θ
cos θ
We get sin θ cos θ = 0 ⇒ 3 x sin θ cos θ = 0
Questions From CBSE Sample Paper 2021-22
Basic Mathematics SP (241)
Q 62) If sinθ = x and secθ = y , then tanθ is
(a)
xy
(b)
x/y
(c)
y/x
(d)
1/xy
Ans: a
Q 63) What
is the value of (tanθ cosecθ)2 – (sinθ secθ)2
(a)
-1
(b)
0
(c)
1
(d)
2
Ans: c
Q 64) Given
that sinθ = a/b ,then tanθ is equal to
Q 65) If
x = 2sin2θand y = 2cos2θ+ 1 then x + y is
(a)
3
(b)
2
(c)
1
(d)
1/2
Ans: a
cosθ + cos2θ= 1,the value of sin2θ+ sin4θ is
(a)
-1
(b)
0
(c)
1
(d)
2
Ans: c
the figure given below, AD = 4cm, BD = 3cm and CB = 12 cm, then cotθ equals
(a)
3/4
(b)
5/12
(c)
4/3
(d)
12/5
Ans: d
Standard
Mathematics SP(041)
∆ABC right angled at B, if tan A= √3, then cos A cos C- sin A sin C =
(a)
-1
(b)
0
(c)
1
(d)
√3/2
Ans:
b
Solution Hint
tan A = √3 = tan 60° so ∠A = 60°, Hence ∠C = 30°.
cos A cos C – sin A sin C = (1/2)x (√3/2) –
(√3/2)x (1/2) = 0
the angles of ∆ABC are in ratio 1 : 1 : 2, respectively (the largest angle being
angle C), then the value of is
(a)
0
(b)
1/2
(c)
1
(d)
√3/2
Ans:
a
Solution Hint
1x + 1x + 2x = 180°, x = 45°.
∠A , ∠B and ∠C are 45°, 45° and
90°resp.
Using these values to find
the value of the given function.
4 tanβ = 3, then